Mycobacterium tuberculosis Expresses a Novel Ph-Dependent Divalent Cation Transporter Belonging to the Nramp Family
نویسندگان
چکیده
Mammalian natural resistance-associated macrophage protein (Nramp) homologues are important determinants of susceptibility to infection by diverse intracellular pathogens including mycobacteria. Eukaryotic Nramp homologues transport divalent cations such as Fe(2+), Mn(2+), Zn(2+), and Cu(2+). Mycobacterium tuberculosis and Mycobacterium bovis (bacillus Calmette-Guérin [BCG]) also encode an Nramp homologue (Mramp). RNA encoding Mramp induces approximately 20-fold increases in (65)Zn(2+) and (55)Fe(2+) uptake when injected into Xenopus laevis oocytes. Transport is dependent on acidic extracellular pH and is maximal between pH 5.5 and 6.5. Mramp-mediated (65)Zn(2+) and (55)Fe(2+) transport is abolished by an excess of Mn(2+) and Cu(2+), confirming that Mramp interacts with a broad range of divalent transition metal cations. Using semiquantitative reverse transcription PCR, we show that Mramp mRNA levels in M. tuberculosis are upregulated in response to increases in ambient Fe(2+) and Cu(2+) between <1 and 5 microM concentrations and that this upregulation occurs in parallel with mRNA for y39, a putative metal-transporting P-type ATPase. Using a quantitative ratiometric PCR technique, we demonstrate a fourfold decrease in Mramp/y39 mRNA ratios from organisms grown in 5-70 microM Cu(2+). M. bovis BCG cultured axenically and within THP-1 cells also expresses mRNA encoding Mramp. Mramp exemplifies a novel prokaryotic class of metal ion transporter. Within phagosomes, Mramp and Nramp1 may compete for the same divalent cations, with implications for intracellular survival of mycobacteria.
منابع مشابه
Overexpression, purification, and site-directed spin labeling of the Nramp metal transporter from Mycobacterium leprae.
It has long been recognized that the pathogenicity of a broad range of intracellular parasites depends on the availability of transition metal ions, especially iron. Nramp1 (natural resistance-associated macrophage protein 1), a proton-coupled divalent metal ion transporter, has been identified as a controlling factor in the resistance or susceptibility to infection with a diverse range of intr...
متن کاملDrosophila divalent metal ion transporter Malvolio is required in dopaminergic neurons for feeding decisions.
Members of the natural resistance-associated macrophage protein (NRAMP) family are evolutionarily conserved metal ion transporters that play an essential role in regulating intracellular divalent cation homeostasis in both prokaryotes and eukaryotes. Malvolio (Mvl), the sole NRAMP family member in insects, plays a role in food choice behaviors in Drosophila and other species. However, the speci...
متن کاملGlobal analysis of the Mycobacterium tuberculosis Zur (FurB) regulon.
The proteins belonging to the Fur family are global regulators of gene expression involved in the response to several environmental stresses and to the maintenance of divalent cation homeostasis. The Mycobacterium tuberculosis genome encodes two Fur-like proteins, FurA and a protein formerly annotated FurB. Since in this paper we show that it represents a zinc uptake regulator, we refer to it a...
متن کاملThe Nramp orthologue of Cryptococcus neoformans is a pH-dependent transporter of manganese, iron, cobalt and nickel.
Cryptococcus neoformans is an important human opportunistic pathogen and a facultative intracellular parasite, particularly in HIV-infected individuals. Little is known about metal ion transport in this organism. C. neoformans encodes a single member of the Nramp (natural resistance-associated macrophage protein) family of bivalent cation transporters, known as Cramp, which we have cloned and e...
متن کاملGrowth of Mycobacterium tuberculosis in a defined medium is very restricted by acid pH and Mg(2+) levels.
Mycobacterium tuberculosis grows within the phagocytic vacuoles of macrophages, where it encounters a moderately acidic and possibly nutrient-restricted environment. Other mycobacterial species encounter acidic conditions in soil and aquatic environments. We have evaluated the influence of pH and divalent cation levels on the growth of M. tuberculosis and seven other mycobacterial species. In a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 190 شماره
صفحات -
تاریخ انتشار 1999